1.
a. {the 5 vowels} | c. {multiples of 7} | e. {odd numbers} |
b. {the first five prime numbers} | d. {the first five square numbers} | f. {the first 4 cubes plus one} |
2.
a. {2, 4, 6, 8, ...} | c. {1, 2, 3, 4, 6, 12} | e. {1, 8, 27, 64, 125} |
b. {53, 59} | d. {0, 1, 2, 3, 4} | f. {-2, -1, 0, 1, 2, 3} |
3. Describe in set builder notation (similar to questions 2e and 2f above):
a. {x: x ![]() ![]() |
b. {x: 4 < x < 8, x ![]() |
c. {x: -2 ≤ x ≤ 4, x ![]() |
4. If A = {3, 4} and B = {4, 5, 6}, find:
a. n(A) = 2 | c. n(B) = 3 | e. A ∩ B = {4} |
b. A ![]() |
d. n(A ![]() |
f. n(A ∩ B) = 1 |
5.Subsets of {7, 8, 9}= { }, {7}, {8}, {9}, {7,8}, {7,9}, {8,9}, {7, 8, 9}
6. If A = {4, 5}, B = {3, 4} and C = {1, 2, 3, 4, 5}, is it true or false that:
a. A and B are equal sets is FALSE | d. C ![]() |
g. A ∩ B = {3, 4, 5} is FALSE |
b. A and B are equivalent sets is TRUE | e. A ![]() |
h. C is a finite set is TRUE |
c. 4 ![]() |
f. If C is the universal set, A' = {1, 2, 5} is FALSE |
i. n(A ∩ B) = 1 is TRUE |
7. If E = {3, 4, 5}, F = {5, 6} and G = {7, 8, 9}, list the following sets:
a. E ∩ F = {5} |
d. F ![]() |
g. E ∩ G = { } |
b. A suitable universal set. {3,4,5,6,7,8,9} | e. E X F = {(3,5),(3,6),(4,5),(4,6),(5,5),(5,6)} | h. E ![]() ![]() |
c. (E ∩ F) ∩ G = { } | f. n(G) = 3 | i. n(E ∩ F) = 1 |
8. If X = {1, 2} and Y = {2}, is it true or false that:
a. n(X) = 3 is FALSE | c. n(Y) = 1 is TRUE | e. 2 ![]() |
b. X ![]() |
d. X and Y are disjoint sets is FALSE | f. X ∩ Y = {2} is TRUE |
9. A = {x: x ≥ 4. x
}
10. B = {x: -1 ≤ x < 4. x I}