1. Describe the following sets in words:
a. {a, e, i, o, u} | c. {7, 14, 21, 28, ...} | e. {1, 3, 5, 7, ...} |
b. {2, 3, 5, 7, 11} | d. {1, 4, 9, 16, 25} | f. {1, 9, 28, 65} |
2. List the following sets:
a. {even whole numbers} | c. {factors of 12} | e. {first 5 cube numbers} |
b. {primes between 50 and 60} | d. {x: x < 5, x W} | f. {p: -3 < p ≤ 3, p I } |
3. Describe in set builder notation (similar to questions 2e and 2f above):
a. {1, 2, 3, 4, ...} | b. {5, 6, 7} | c. {-2, -1, 0, 1, 2, 3, 4} |
4. If A = {3, 4} and B = {4, 5, 6}, find:
a. n(A) | c. n(B) | e. A ∩ B |
b. A B | d. n(A B) | f. n(A ∩ B) |
5. List all of the subsets of {7, 8, 9}
6. If A = {4, 5}, B = {3, 4} and C = {1, 2, 3, 4, 5}, is it true or false that:
a. A and B are equal sets. | d. C A | g. A ∩ B = {3, 4, 5} |
b. A and B are equivalent sets. | e. A B = {4} | h. C is a finite set. |
c. 4 (A ∩ B) | f. If C is the universal set, A' = {1, 2, 5} |
i. n(A ∩ B) = 1 |
7. If E = {3, 4, 5}, F = {5, 6} and G = {7, 8, 9}, list the following sets:
a. E ∩ F |
d. F E | g. E ∩ G |
b. A suitable universal set. | e. E X F | h. E F G |
c. (E ∩ F) ∩ G | f. n(G) | i. n(E ∩ F) |
8. If X = {1, 2} and Y = {2}, is it true or false that:
a. n(X) = 3 | c. n(Y) = 1 | e. 2 X |
b. X Y | d. X and Y are disjoint sets. | f. X ∩ Y = {2} |
9. Sketch on a number line, A = {x: x ≥ 4. x }
10. Sketch on a number line, B = {x: -1 ≤ x < 4. x I}