## Sets Exercise

1. Describe the following sets in words:

 a. {a, e, i, o, u} c. {7, 14, 21, 28, ...} e. {1, 3, 5, 7, ...} b. {2, 3, 5, 7, 11} d. {1, 4, 9, 16, 25} f. {1, 9, 28, 65}

2. List the following sets:

 a. {even whole numbers} c. {factors of 12} e. {first 5 cube numbers} b. {primes between 50 and 60} d. {x: x < 5, x  W} f. {p: -3 < p ≤ 3, p  I }

3. Describe in set builder notation (similar to questions 2e and 2f above):

 a. {1, 2, 3, 4, ...} b. {5, 6, 7} c. {-2, -1, 0, 1, 2, 3, 4}

4. If A = {3, 4} and B = {4, 5, 6}, find:

 a. n(A) c. n(B) e. A ∩ B b. A  B d. n(A  B) f. n(A ∩ B)

5. List all of the subsets of {7, 8, 9}

6. If A = {4, 5}, B = {3, 4} and C = {1, 2, 3, 4, 5}, is it true or false that:

 a. A and B are equal sets. d. C  A g. A ∩ B = {3, 4, 5} b. A and B are equivalent sets. e. A  B = {4} h. C is a finite set. c. 4  (A ∩ B) f. If C is the universal set, A' = {1, 2, 5} i. n(A ∩ B) = 1

7. If E = {3, 4, 5}, F = {5, 6} and G = {7, 8, 9}, list the following sets:

 a. E ∩ F d. F  E g. E ∩ G b. A suitable universal set. e. E X F h. E  F  G c. (E ∩ F) ∩ G f. n(G) i. n(E ∩ F)

8. If X = {1, 2} and Y = {2}, is it true or false that:

 a. n(X) = 3 c. n(Y) = 1 e. 2  X b. X  Y d. X and Y are disjoint sets. f. X ∩ Y = {2}

9. Sketch on a number line, A = {x: x ≥ 4. x  }

10. Sketch on a number line, B = {x: -1 ≤ x < 4. x  I}