Unit Test #51

Select your answers to the following 10 questions from the pop-up menus in the right hand column. Clicking the "Begin Test Again" button will clear all the answers.

 

Q1:

Which of the following is NOT a subset of the set of integers?

A. {integers}
B. {whole numbers}
C. {natural numbers}
D. {real numbers}

Answer 1:

Q2:

is a natural number.
The solution set of the inequation  is

A. {1}
B. {1, 2}
C. {1, 2, 3}
D. {1, 2, 3, 4}

Answer 2:

Q3:

Which of the following is NOT a subset of {parallelograms}?

A. {squares}
B. {rectangles}
C. {rhombuses}
D. {kites}

Answer 3:

Q4:

If C = {x: 2x < 9, x  N}
the set C =

 

A. {0, 1, 2}
B. {1, 2, 3, 4}
C. {0, 1, 2, 3, 4}
D. {3, 4, 5, 6, 7, 8}

Answer 4:

Q5: If n is an integer, the solution set of 
n2 < 9 is:
A. {2, 1, 0, -1, -2}
B. {2, 1, 0, ...}
C. {2, 1, 0}
D. {8, 7, 6, ...}
Answer 5:
Q6: The set {0, 1, 2, 3} is an example of : A. an infinite set
B. a finite set
C. a disjoint set
D. a cross product
Answer 6:
Q7: If A = {9, 10, 11} and the universal set is
{6, 7, ...11, 12} then A' is equal to
A. 3
B. {6, 7, 8, 12}
C. {9, 10, 11}
D. {6, 7, 11, 12}
Answer 7:
Q8: If A = {9, 10, 11} and B = {6, 7, 8, 9, 10}
then A ∩ B =
A. {6, 7, 8, 9, 10, 11}
B. {9, 10}
C. {6, 7, 10, 11}
D. {8, 9}
Answer 8:
Q9: For the two sets in question 8, 
what is n(A  B)?
A. {6}
B. 6
C. 2
D. {6, 7, 8, 9, 10, 11}
Answer 9:

Q10:

The number of subsets of {a, b, c} is:

A. 3
B. 6
C. 7
D. 8

Answer 10: