Trigonometric equations are equations containing terms such as sin x and cos x.
They can be solved using the trigonometric graphs and, if necessary, a calculator.
Because trigonometric functions are periodic and continue forever, these trigonometric equations often have an infinite number of solutions unless the domain (x-values) is fixed. Usually only values between 0 and 2π or 360° are required.
In the examples below the solutions are given in degrees. If radians are required the mode of the calculator must be changed.
sin x = c
cos x = c
To solve an equation such as sin x = 0.5, consider the functions y = sin x and the line y = 0.5. Where the line and curve meet will be the solutions. A calculator can be used to find the first value.
The two solutions of 30° and 150° can be read off the graph, if the graph is clear and big enough
OR
A caclulator can be used for the first solution
30° and the second solution found from the symmetry of the graph (180° − 30°).
sin ax = c
cos ax = c
To solve an equation such as cos 2x = 0, consider the functions y = cos 2x and y = 0. The line y = 0 is also the x-axis and where the x-axis and the curve meet will be the solutions.
The four solutions of 45°, 135°, 225° and 315° can be read off the graph, if the graph is clear and big enough.
OR
A caclulator can be used for the first solution
90° but remember this is 2x = 90 therefore x = 45° and the other three solutions worked out from the symmetry of the graph.
sin (x − b) = c
cos (x − b) = c
To solve an equation such as cos(x + 30°) = -0.7, consider the function y = cos(x + 30°) and the line y = -0.7.
Where the line and curve meet will be the solutions.
The two solutions of 104.4° and 195.6° can be read off the graph, if the graph is clear and big enough.
OR
a caclulator can be used for the first solution
134.4° but remember this is
x + 30 = 134.4 therefore x = 104.4° and the other solution is 330 -134.4 = 195.6°