1. Use a calculator to do the following calculations:

 a. 55 × 39 b. 57 + 33 × 9 c. 50 ÷ 5 × 10 d. 5795 ÷ 5 e. 19 + 17.5 − 5.335 f. 33 × 7.5 ÷ 5 g. 1.3975 ÷ 0.5 + 3 × 5 h. 33 × (55 + 33) i. (33 + 57) × 91 j. 5.3 + (3.5 − 3.3) × 3.5 k. 352 + 332 l. 33 − 5.33 m. 3.55 n. 5.52 − 3.52 o. 35.53 + 59.1 × 75.9 p. 5.54 q. 13.75 ÷ 0.55 r. -8.6 + -10.4 s. 5⁄8 + 1⁄12 t. 13⁄5 × 31⁄4 u. v. (3.8 × 102) + (4.5 × 103) w. (98 × 103) × (34 × 105) x. -4.6 + - 2.4 − - 7.6

2. The following table shows the heights of the 10 highest Australian mountains.

 Name of mountain Height (metres) Bogong 1986 Gungartan 2060 Feathertop 1922 Perisher 2040 Paddy Rushs Bogong 1920 Kosciuszko 2228 Twynham 2180 Townsend 2209 Tate 2040 Jagungal 2040

a. Enter the data into the first two columns of a spreadsheet.
b. Make the mountain names bold and red.
c. Centre the heights.
d. Use a formula to find the average of the heights.
e. Sort the mountain names into alphabetical order.
f. Sort the heights into order from largest to smallest.

3. The following data shows the money earned by fruit pickers in a week by four workers at an orchard.

 Silvio Alisi Tumua Jenny Monday 234 342 423 265 Tuesday 334 472 192 160 Wednesday 276 339 401 193 Thursday 334 459 410 329 Friday 203 295 184 392

a. Put this information into the first 5 columns and first 6 rows of a spreadsheet.
b. Use formulae to find the total amount earned by each fruit picker.
c. Use formulae to find the total amount earned each day.
d. Find the total amount earned by all of the fruit pickers.
e. If the workers are paid \$11 for each hour worked, use a spreadsheet cell to calculate the total number of hours worked.

4. The following table shows the heights of the 10 highest New Zealand mountains.

 Name of mountain Height (metres) Silberhorn 3300 Cook 3754 Hicks 3198 Lendenfeldt 3194 Torres 3163 Tasman 3497 Teichelmann 3160 Sefton 3157 Malte Brun 3155 Dampier 3440

a. Enter the data into the first two columns of a spreadsheet.
b. Make the mountain names bold and red.
c. Centre the heights.
d. Use a formula to find the average of the heights.
e. Sort the mountain names into alphabetical order.
f. Sort the heights into order from largest to smallest.