The expected value or mean of a probability function of a random variable gives a measure of the average or central tendency, but no indication of how spread the values are likely to be.

The standard deviation or variance of a probability distribution is measure of the spread of likely values of a random variable.

The variance of the discrete random variable X with E(X) = μ is given by:

VAR(X)
= E(X − μ)2
  = Σ(x − μ)2 .P(x)

Example

The probability distribution table for the random variable X is shown below.

x
3
4
5
6
7
P(X = x)
0.1
0.2
0.4
0.2
0.1

The expected value E(X) = 5 (because the distribution is symmetrical)

The variance VAR(X) = Σ(x − μ)2 .P(x)

 

x
3
4
5
6
7
x − 5
3 − 5 = -2
4 − 5 = -1
5 − 5 = 0
6 − 5 = 1
7 − 5 = 2
(x − 5)2
(-2)2 = 4
(-1)2 = 1
02 = 0
12 = 1
22 = 4
P(X = x)
0.1
0.2
0.4
0.2
0.1

VAR(X) = 4 x 0.1 + 1 x 0.2 + 0 x 0.4 + 1 x 0.2 + 4 x 0.1

              = 1.2

VAR(X) = 1.2

Alternative Formula for the Variance of a Random Variable

The formula used above requires quite a lot of calculation for each value of the variable.
The following formula is quicker to use:

VAR(X) = E(X2) – [E(X)]2

Proof

VAR(X)
= E(X − μ)2
  = E(X2 − 2μX + μ2)
  = E(X2) − 2μE(X) +E(μ2)
 

= E(X2) − 2μ2 + μ2

  = E(X2) − μ2
  = E(X2) − [E(X)]2

Example

The probability distribution table for the random variable X is shown below.

x
3
4
5
6
7
P(X = x)
0.1
0.2
0.4
0.2
0.1

The expected value E(X) = 5 (because the distribution is symmetrical)

E(X2) = 9 x 0.1 + 16 x 0.2 + 25 x 0.4 + 36 x 0.2 + 49 x 0.1

          = 26.2

VAR(X) = E(X2) − [E(X)]2

              = 26.2 − 52

             = 1.2

VAR(X) = 1.2

Summary

The following notation is usually used in statistics and probability:

 
Mean
Standard deviation
Variance

Random variables

E(X)
SD(X)
VAR(X)

Sample

Y12_Variance_of_a_Random_Variable_01.gif
s
s2

Population

μ
σ
σ2